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APPROXIMATION BY BERNSTEIN SYSTEMS*

William A. Porter

0. Abstract Let K denote an arbitrary compact subset of L2.
Let f be any causal continuous function on L2. Then there is a
linear differential system : x(t) = A(t)x(t) + B(t)u(t), and a
memoryless Rolynomic state to output map y(t)=4(x(t)) such that
the system , f , thereby computed satisfies

sup I If(u) — 
~

(u) I J < c
x e K

where e> O is arbitrary . This and other results are developed .

1. Introduction. This article deals with the approximation

of nonlinear systems by polynomic operators . For perspective

it is helpful to consider the familiar Volterra series

expansion on L2 given by

• p(x) = k
0 

+ [ki(rx)x(ct)dct + 
JJk 2

(a ,~ )x(a)x(8)dad~ +

JJJk 3(ct ,B,Y)x(cz)x(B)x (Y)dcLd~dY 
+ . .  . (1)

where the kernels k0,k1,...,k satisfy proper ties suitable to

an operator on L2. For the obvious reasons we refer to each

term on the right hand side as a power function . If the

number of terms is finite then p is said to be a polynomic

operator. Our interest in polynomic operators centers on

their use as approximates of the more general nonlinear

functions on L2.

* Supported in part by the United States Air Force Office
of Scientific Research , Grant No. 77~~O S5.~~

t Computer , Information , and Control Program , The University
of Michigan , Ann Arbor , Michi gan .
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The relevant l i te ra ture  may be grouped into two

subcategories. First there is the analytic theory in which

f is assumed to have derivatives (Frechet or Gateau) of

all orders and p arises as a power series expansion on a

bounded domain. This line of development was initiated by

• Volterra [1] and was first applied in a systems setting by

Weiner and in ensuing years several others including [2],

[3], and [4]. More recently [5], [6], [7], [8] have investigated

the Volterra expansion of solutions to nonlinear differential

equations with current emphasis on computation and convergence

problems .

The analytic theory identifies the power functions

with the derivatives of the system function , f, to be

approximated. The requisite differentiability is a severe

condition , however , a fringe benefit accrued is that the

causality of the power functions is dictated by the causality

of f. • .

In an independent line of development the polynomic

approximation problem has been approached as a generalization

of the classic Weierstrass result. In this setting the

function , f, to be approximated need not be differentiable.

Emphasis is placed on uniformly approximating f, by the

polynomial p, over an arbitrary compact set. In this approach

the causality issue is less trival. The comtutation of the

power functions, which no longer represent derivatives, has

here to fore been obsure. In sections (3) and (4) we develop

the concept of a Bernstein differential system. This system provides

one a nstructive realization of the Weierstrass approach. In section (5) we
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compare in part the properties of the analytic theory, the

Weierstrass based theory and in particular the Bernstein system

realization of section (4).

An incidental bonus of the Bernstein system is a

pseudo sampling theorem for systems . In short , given an

arbitrary system with a prescribed continuity modulus , the

density with which one must input-output sample in order to

be able to approximately reconstruct the system is established.

For efficiency of presentation we shall in many cases be

overly restrictive in the assumptions made , for example we

consider only Hilbert spaces . Also in sections (3) and (4)

the development is purposely constrained so as to use classical

results on the Bernstein polynomials .

In closing this introduction it is noted that the

admittance characteristic of the enhancement mode MOSFET

transistor provides an almost exact square law (see [9]).

It is easily shown that squaring devices can be used to

construct general polynomic operators of the type necessary

to realize the Bernstein system . Thus it appears that the

topic of polynomic system approximation may• have a ready

practicality in terms of microcircuit technology .

2. Weierstrass Approximation. •As the technical work of this

study deals primarily with the Weierstrass approximation it

is useful to comment in somewhat more detail on the existing

I
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literature . In this regard we cite first the original

contribution of Weierstrass [10] whose fundamental result

in contemporary form reads as follows .

Let f be an arbitrary continuous function on R, the

real line . Let D c R be an arbitrary compact set. Then

for every c > 0 there exists  a f in i t e  polynomial p,  such that

sup{If(x) - p(x)t: xcD} < c. The Weierstrass result , over

the years , has drawn the attention of several distinguished

mathematicians including Frechet [11], Bernstein [12] and

Stone [13] who investigated the re1at~onship to power series

expansions , constructive methods for finding the polynomial

and extended the result to R~ among other things .

More recently Prenter [14] considered a real separable

Hu bert space H, and showed that if K c H is compact , c > 0

and f continuous on H then there exists a finite polynomic

operator p, such that

sqp~ lf(x) - p (x)II < c. (2)
xcK

In a similar effort Prenter [15] and Ahmed [16] were able

to use normed linear spaces.

The Prenter result [14], for example , states that if f

is a continuous function on real. L2(a,b) then on every compact

subset there exists a finite number of kernels k0,k1 .. ~~~
such that p of equation 1 is an c-approximation for f.

Actually we would suspec t more, namely, that if f is causal
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then each kernel k~ is causal , that is for instance - 

.

k1(t,r) 
= 0, t > t. More generally, can a causality

structure be superimposed on the function and its

approximation? This question is answered affirmatively in

[17] and [18].

The setting for [17] and [181 is a Hilbert

resolution space1 {H ,Pt} where H is real and separable. The

set K c H is always compact. The sets : C, SC , M, C(K), and P

denote the causal , strictly causal , memoryless , continuous

on K c H, and polynomic functions , respectively, on {H,Pt}.

For brevity we shall say that P is dense in C(K) in the

sense of Prenter ’s theorem .

The results of [17] include the following. The set

P n SC is dense in C(K) fl SC. In L2 the stronger result that

P n SC is dense in C(K) fl C is also established. This last

result does not abstract. In Z.2 it is known [18] that P fl SC

is not dense in C(K) fl C.

All of the above results are nonconstructive in that

A formal definition is given later.

r
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they give no clue as to finding the polynomic approximate

of a given function . On the real line , however , several

constructive forms of the Weierstrass result do exist and

the Bernstein polynomials constitute one of the more

intriguing approaches to such constructions . In section (3)

we develop a generalization of the Bernstein polynomials to

real Hilbert  space . Using a causal data interpolat ion scheme

ident i f ica t ion  of the p c PII SC that approximates f c C ( K ) n C

results.

In section (4) we consider the realization of the operator

p in state variable form . This objective is also achieved as

is evidenced by the fol lowing theorem of section (4)

Theorem. For every f c C(K) Ii C and c > 0 , there exis ts  a

differential system

~(t) = A( t) z ( t) + B ( t ) u ( t )  , z ( 0 )  = 0,

w(t) = •(z(t),t)

where $((‘),t) is polynomic , such that the map w = p(u)

satisfies

supllf(u) — p(u) II < c.
K

For obvious reasons the equations of this theorem are called

a Bernstein system .

3. The Bernstein Polynomials. We shall make use of a

classical result on the Bernstein polynomials. It is helpful

to introduce this result and associated notation before
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proceeding. First we define the functions p~(v:(•)) on [0,1]

by the expression

p~ (v :x) = 
( )X

V (l...X)~~~
V

, x c [0,1] (3)

where vctO ,l,. . . ,n}.
Now let f be a bounded function on [0 , 1]. The polynomial

f~ (x) is defined by the equation

A fl
f~ (x) = ~ f( v/n) p~ (~~:x) , x c [0 , 11.

~,=0

The familar result of Bernstein is that fn(X) 
-

~~ f(x) at

every point of continuity of f .  Moreover , if f is continuous
A

on [0 ,1], then f~ f uniformly . While we shall not dwell

on the proof of this result  i t  is noted- tha t  pos i tiv i ty

of p~ (v :x )  on [0 , 1] was used by Bernstein in an essential way .

Consider then c~ = [0,1]m c Rm and let f be a function on

Rm which is bounded on c~. Let x = (x 1,...,X )  c ~2 and define

the polynomic function

,xm) 
=

. .  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(4)

V 1 ° “m °

Using the single variate proof as a model it is easily shown

that ~ f pointwise at all points of continuity of f

and uniformly over Q if f is continuous on c~.
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Th e far ther  extension that is needed in -

the present study is a re la t ively  mild  one. For this let

H be any real Hi lber t  space and te 1, . . .  ,em } any f i n i t e  set .

We then form

= {z = : 0<x .<l} ç5)

and define the polynomic function f~ by th e equali ty (4) .

The p roof for H=R m and ~ = [0 ,1J
m uses nei ther  the l inear

ind ependence nor the or thonormal i ty  of the coordinate basis

Of Rm . As such the resul t ;  that  H f (x)-f(x)Il 0 at all

points of continuity of f and un i fo rmi ly  over ~2 if f is

continuous on ~~~, follows by inspection .

To summarize the present adaptat ion of ex i s t ing  resul ts

to Hu bert spaces it is convenient to simplify notation. First

let {e1,... ,em} be linearly independent and let {e~ ,. . . ,e~} be

the associated dual :et; that is l inear spanCe 1,.. . ,e~} =

linear span{e 1, . . .  ,e } and < e . , e. > = 
~~~~. i ,j =1 , . .  . ,m. Let

1 J
n - (n 1, n2,... ‘~ m~ 

and ~ ~~l~~’2 ’~~ ~V~~) be two integer

tuplet s. We shall use n -‘ to denote the condi t ion that

all n~ -‘ ~~~, al though not necessari ly at the same ra te .

Using equation (3) we define

p(v:x) = l l Pn (v i:<ei,x>). (6)

We note that p is a scalar valued polynomic map defined on H.

Using the notations

= . . .

“1 °

-J
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and

In
f ( v/n )  = f1 ~ (v./n.)e.) (7)

i=l 1 1. 1

we define the polynomic function on H by the expression

f~(x) = ~ f(v/n)p(v:x), x c H. (8)
— v=O — —  —

The result which can be gleaned from the classical

theory is the following

Theorem (1). If f is bounded on ~2 then for each x c c~, and

c > 0 there is a finite tuplet n such tha t lf (x )  
- f~(x) j~ < c

at every continuity point of f. If f is continuous on c2 then

IIf ~(x) — f (x) Jl 0 as + uniformly over ~2.

Remark. In the above theDrem c~ is given by equation (5). For

the more general situation

= {~~~ ct1e~ : O< ct
~
<M
~
},

a s imple change of variables f(v/n) = f(~~~
(v j/n j)M jej1

preserves the validity of the theorem. If K is an arbritrary

compact set then one can show that an af fine map ,T, exists such

that T (K)flQ~~~ . Moreover T has an affine left inverse, T+.

Letting g=fr4 we construct to fit g on ~2 and then show that

g~~T fits f on K. These manipulations are straight forward but

cluttersome and are omitted to save space.

_________________________________________ -J
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Causali ty Structure. We now augment our real valued Hilbert

space wi th a resolu t ion of the iden ti ty.  The resul tan t

Hilber t resolu tion space has proved to be a na tural  se tt ing

for the study of system theoretic problems (see [1 7]  , [2 0] ,

[21], [22]).

Let v deno te an ordere d se t wi th min imal  and maximal

elemen ts to t
~, 

respectively. The weakly closed set of orthoprojec tors

{pt.tcv} is a resolution of the identity provided ptO = 0,

pt = I and pt > p8 whenever t > 8. Here pt > p8 deno tes the

condition ptp8 = ~8~ t = p8. We use also the notation = 1~ pt

tcv and ~(t,8) = ~t~~B = ptp = p p t Note that 1~(t,8) is

an orthoprojector and that t~(t,8) 
= 0 all B>t.

Consider now a function f on H with f(O)=O. Following

[171 , [21], [22] we say that f is causal if and only if

ptf = ptfp t, all  t e v. (9)

Now let {t0,t~ ,.. . ,tN 1,t~} be an ordered finite subset of v.

For convenience set p 1 = pt I and ~(j) 
= t~(j,j-1) = PJ_ 1 P

3 . Usin g

equa t ion (9) it follows eas i ly  tha t ~(j)f = ~ ( j ) f P 3 holds

for causal f. Since ~ ~(j) = I it follows that
j  =1

f = 
~ ~ ( j ) f P 3

j =1

and taking the limit as the mesh {to,...,tN l , t
~,

} is ref incd

one arrives at a natural integral representation ,

f = f d P ( s ) fP 5
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for f. This abbreviated discussion is expanded on in the

references cited. We use it here for motivational purposes.

Our attention now returns to the earlier Bernstein problem

with H being a Hu bert resolution space. The set {e1,.. . ,em
} is

said to be well posed provided {Pte.: 1=1 ,... ,m} is l inear ly

independent for every t > to . For convenience we assume

that ~e1,.. . ,em
} is wel l posed.  We no te tha t if

m
= { ~~~~~ : O< ci1<l}i=l

= {~~~~ pt : O<8.<l}

then = pt (ç2) It is also obvious that when {e1,..,,e }

is well posed then fez,... ,e~
} is well  posed and the se t

{(pt
e )

+ . . , ( P tem ) + 1 is well defined for al l  t > to .

Using equation (3) W O make the extended definition

m 
~ +p(v:x;t) = IT p~ (v . :< (P e1) ,x>), all x C H , (10)

• i=l u 1

*where to -/ ~~~ It can be easily shown that p is continuous

in t, and , of course , polyn om ic in x , moreover

ptX = 0 ~~~~> p(v:x;8) = 0, all 8 < t~. (11)

Recall now that f (~ /n ) , of equation (7) , for each v/ n , is

an elemen t of H. Choosing now a partition for v we form

* This property assumes that {p t} is continuous in the sense

that lim i ~p
tp~~~~~ I = 0 all tcv.

c~0



—

12

N
• E ~ (i)f(v/n)p(v:x; t.). (12)

3=1

We now take the li’nit over partition refinement

N
fdP(s)f(v/n)p(v:x;s) = j im ~ ~ (j ) f ( v / n ) p ( v : x ; t . )

N+c~~j=l 
—

where the limit converges by a result of Masani [23J.

Since the set v < .n is finite we may sum the above function

without disturbing the convergence. This results in the

defin ition

f~ (x) = ~~JdP(s)f(v/n)P(v :x;s). (13)

We note first that f~ is causal , ind eed

p tf
C ( )  = ~~

f

t
áp (s)f(v/n)p (u:x;s)

however

p ( v : x ; s )  = p ( v : P t
~~;s) 5 t

and hence ptfC = ptfCpt t > to Suppose now tha t f is

causal. Thus in equation (12)

~(j)f(~ /n) = P~~ 1P 3 f (v / n )

= ~~j)(fP
3 ) ( v/n)

A (j)f(~~ (v~ /n j )P3 e .)~i=l

therefore

~(j)f~ (x) = A ( j ) {  ~ (fP 3)(v/n)p(v:P 3x;t.))
— v=0 3
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• The bracketed quantity, however , is the I3ernstèin~approximate

for ~(j)fP
3 thus

N 
• 

N
Z ~ (j)f~ ~j=.1 — j=1

with convergence in the spirit of theorem (1).

We summarize our developmen t in the following theorem

Theorem (2). If causal f is bounded on ~2 then for each xccl ,

and c>0 there exists n such tha t I If (x )  
- f~(x)II < C

at every continuity point of f. If f is continuous on ~ then

n exis ts such tha t sup~ (f(x) - fC(x) I I < c.
XC~~ 

-

4. Realization. The explicit nature of equation (13) and

theorem (2) have answered the central theoretical

questions in rather complete form . It is of in teres t , however ,

to give a realization of the causal Bernstein function , f~ , in

state variable form. For this we shall focus attention on

the real L2 [0 ,d].. for O<dc~ equipped with the usual inner

product and tal.e the resolution of the identity to the familiar

truncation operators

• . 1x(8) B < t
(ptx )( B) (

1% 0• 8 > t

In this last expression and elsewhere we slur over the distinction

between functions and equivalence classes of functions as is

the convention in dealing with the Lebesque spaces.
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Consider first the set ~P
te : i=l ,. .. ,m) which is well

posed. In earlier studies , [l9 J~ [20], the compu ta tion of

the parame terized dual set f(Pte1)
+ } has been explored in

some detail. The pertinent results are summarized in the

following developmen t. Following the earlier work define now

s-J-ie m x  m symmetric matricies N(t), X( t) ,  11(t), A( t) by

the equalities (here t c (0,°’) )

- • 

N~~(t) <pte e > I  Ip tei l r1i 1;t~~~1-
1
’
~ l

X1~(t) 
= e~~(t) I IP tei l I 2 a~
= ei(t)e j (t ) I IP te j I l h II P te j II l

A
~~
(t) = I ~~~~~~~~ I ~~~~

where X( t) ,  A(t) are diagonal as indicated by the Kronecker

term .

Note that N(t) is the Grammian matrix of a linearly

independant set namely {Ptei/ I Ptei I I } and as such~ is

invertable for all t > 0. It is shown in the references cited

that K(t) N(t)~~ sa t i s f ies  the Ricca ti equa t ion

fc ( t)  = l/2{X(t)K(t) + K(t)X(t)} - K(t)rI(t)K(t). (14)

The equali ty K( t ’) = N ( t ’)~~ provides an initialization on

this last equation for any t’ > 0. In particular since

limN(t) = Grammian {e1/ t l e~ !I} it may prove convenient to solve
t+t tx’

equation (14) in reverse time .
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• For convenience we let

t
= co lumn(P e1, ..,P em

= column ( (P t e1) ’ , . . .  (p te ) +
)

A result of [20] is that

= A(t)K(t)A(t)et, t > 0 (15)

which is an explicit formula for e~ . From equations (10), (13)

we see that <(Pte1)
+
,x> is a key ingredient. Using (15)

it can be easily seen that these functions are computed

in vector form by the expression

r t
‘V(x,t) = I A (t)K(t)A(t)e(s)x(s)ds , (16)

JO

where

e(s) = column(e i
(s),...,em(s))

‘V(x,t) =

We are now in position to state the relevant result

of [20 ] .

‘••\ Theorem (3). The equality z(t) = V (x,t) holds if and only if

.j ,(t) = -l/2X(t)p(t) + A(t)e(t)x (t) , t c (0,m)

p ( O) = 0

z( t )  = It(t)K(t)p (t) , 
t c (0,~)~

It is noted that this theorem provides an explicit state

variable realization of the requisite map , x + ‘1’.
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In stating our final result it is helpful to utilize

the change of variables z(t) A(t)K(t)p(t) and the identity

A — (-l/2)XA which re~u1ts . in the corojiary

Corollary. The equality z(t) = ‘V(x,t) holds if and only

if

~ (t )  = -M t ) K ( t ~ ; i ( t ) A 1(t ) z ( t )  + A (t)K(t)A(t)e(t)x(t), t~0

z(O) = 0. (17) -

We turn now to the computation of the resolvent integral

of equation (13). Consider first a fixed y.c L2(0,
co) and a

bounded continuous scalar valued function m(’). Using the

notation ~(j) of ~ection (3) we have

• 1mct~~~
8) ~~~~~~~~ < B < t~

~.(j)y m (j) =

0 otherwise

thus

im (t)y(t) t t~

lim~(j)ym(j) =

It. -t..~1i o
‘ ‘ 0 otherwise.

Clear ly then on L2, z = JdP(s)Ym(s) if and only if

z( t) = in (t )y( t ) t e (O ,~ ).

For convenience let y
~ 

= f(v/n). Recall also the scalar

valued functions , p(v:r) on 10,11m

• 

- --  

~~

. , •
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p(!:r) = ll pn (v i:Ti) (r1,...,rm) c

We construct the map c~: (011]
m 

+ L2 by

~(r:t) = ~ y~(t)p (v:r), r c [Ø ,1]m
v= 0 —

• The above development has culminated in the theorem.

Theorem (4). = f~(x) if and only if

1

~(t) = —A(t) K(t)11(t)A (t)z(t) + A(t)K(t)A(t)e( t)x(t) , t>0

z( 0) = 0,

w(t) = ~ (z(t):t).

Example. In this example we let H = L2(O,l) and consider

the power functions

x~(t) = (1/j)t~ j= 1,..., tc [0,l].

It is readily verified that the set {Ptx~ : j= l,...} is

linearly independent for any t c (0,1] and that

~~~~~~ , 2 = t2i+~~~
2c2j+n j =  1 , . . .  . (18)

In particular I Ix~ I = l/j/2j+l.

Now let r be given by the defining equality

r {x” ~ a . x .  : Ia. I~M}3 3 3

H ~~~~ 
* - 

- 

- - .
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where 0<M<~~ . Using standard techniques it is not difficult to

verify the following facts about r. First r is compact and

second

I I  ! a~X~ I l < fiN//i
j= y•~+l

For any c>O we choose 9(c)> 8M2/c 2 in which case

= { x: ~~~~~ j x j : I ct~ I ~ M}

contains an c/2 cover for r. Using continui ty arguemen ts

we construct approximations on

The set CPtx~ : j=l,.. ,.Q} is linearily independant for

all t>O and hence the tools of theorem 4 apply. For convenience

let us assume O x ~~l and make the choice e~=x~ , j 1 , . .  , t.

We move then to theorem (3) and its corol la ry . Using

the def ining equality it is easily seen that N is constant,

a property which was explored in detail in [191, and that all

quantities of equation (17) can be explicity determined . In

fact,

N
1~~~~

= v’t2i+1)(2j+l)/ (i+j+1)

X1~ 
= (2J +l)~S 1~ /t

fl1~ (t)  = /(21+l)(2j+l)/t

e ( t )  co l(t , ... , t9’/t)

It is important to note that the state vector of equation 17

is of dimension 2. This dimension is fixed from this point

forward and does not vary with n as the f~ approximations are

constructed. Of course as c is reduced 2(c) increases.

r
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To carry forward in a very explicit manner let us

assume 2=2. Then

r 16  -4f Yi’~ r3 01 v’W
K= - 

x=c~~ I,
~~ 

16 LO 5J L’~Using equation 18 it is clear that A(t) and hence the matricies

of equation 17 are readily and exp lici tly de terminable .  Our

attention turns to the construction of the polynomic state +

output map of theorem 4.

Our function set is of the form x(t)=~t + 8t
2 with

O<a, 8<1 and we consider the function

[f(x)](t) = x(t) +

for y = f ( x )  it follows that

y(t) = 48 2 + ctt + 8t2 (19)

Let us choose n = (2,2) in which case V can take on nine values

< n. Using the previous notation the following table is

readily constructed
TABLE 1

v/n f ( v / n ) ( t )  p ( v 1 : z 1 ( t ) O  p~~(v 2 : z 2 ( t ) )  p ( v : z ( t ) )

(0 . 0) 0 (1— z 2 ( t ) ] 2 
. (1— z 2 ( t ) 1 2 (1— z 1 ( t ) 1 2 (1—z 2 (t f l 2

(0 . . 5 )  1+ .5t 2 ( 1 — z 1 ( t ) ) 2 2z 2 ( t ) f 1 — z 2 ( t ) I  2 ( 1— z 1(t ) ) 2 z 2 ( t ) ( 1 — z 2 ( t ) )

(0 , 1)  4+t 2 t l — z 1 ( t ) 1 2 z 2 (t )  (1_ 2
1 ( t ) ) 2z 2 (t )

( . 5 , 0) .St 2z i ( t )  (1— z 1 C t )  I (1— z 2 (t )  ) 2 2z 1 (t)  L1— z 1 ( t )  J [1— a 2 C t )

( . 5 • . 5 )  1+ .5t + .5t 2 2z 1 ( t) (1 — z 1 ( t ) ) 2z 2 ( t) (1— z 2 ( t ) )  4z 1 ( t ) z 2 ( t ) ( l — z 1 ( t ) ) (1— z 2 ( t ) J

( .5 ,1) 4+ . 5t+t 2 2z 1( t ) ( 1 — z 1 (t) j z ’ (t ) 22 1 (t) [1—z 1 ( t ) I z ’ (t )

(1 .0) t a ’ (t)  il—a 3 (t) 2 a ’ Ct ) ( 1— a 2 ( t )

(1 , .  5) 1+t+.5t 2 
a : Ct) Ct) (1—z 2 Ct)  21i Ct ) a2 Ct) (1

~~a2 It ) )

(1 ,1) 4+t+t 2 z ’(t )  z * ( t)  z (t )z  Ct )

The function ~(z(t);t) is formed by taking the dot

product of the f(v/n)(t) and p(v: z(t)) columns of table 1.

The resultant expression does not add any additional clarity

______________ r
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so we will forego this here. To illustrate, however, we note

that w1~en ~=0 , 0<8<1 then z1(t)=O and z2(t)=8. The above

dot product produces

•(z(t) ,t) = (1. + .5t 2 ) ( 2 )  (8) (l 8) + (4 +

= 2 8( 1 +8) + 8t2

The systen , f, produces

f(x) = 482 +

Similarly with 0<c&<l and 8 0  it can be verified easily that

(fx)(t) = 4(z(t),t )  = czt.

5. Remarks and Conclusions. The example of the last section

demonstrates several properties which are not explicit in

theorem 4. We have already noted that the size of the state

space does not change with n. We see also that the output

constraint map ~ is a memoryless function of the state. Finally

it is clear from table 1 that ~ can be related to a bilinear

fo rm . In short we let i= (l,z1,z~ , zZ,z~
) in which case there

exist a matrix E(t) such that

4(z(t),t) = i*(t)E(t)~~(t) t>0

The matrix E being taken from table 1 in the obvious way. This

f orm is also valid in the general case.

It was noted in the introduction that our results have

the characteristics of a sampling th~orem for systems. The

development does not emphasis this, however , in these results
C

one can see f~ as a reconstruction of f from the samples

{ f (v / n )  : v=O ,l, . . ., n} .
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It should be no ted that given a set of input-output

pairs f(x~~y~ ) }  i t is possible , by easier means (see [19]),

to cons truc t a causal polynomic map p,  such tha t p (x~ ) = y 1

i=l ,...,n. The polynomic construction of [19] however will not

necessar ily uniformly approximate the continuous function

genera ting the ori ginal data. In the same spirit the Bernstein

system of section (4) , whi le  it approxima tes the func t ion , does

not reproduce exactly the original input—output measurements.

(It comes c close , of course . )

In section (2) it was pointed out that the results of

[14, 15, 16, 17] use a separabil i ty assump tion on the domain .

The cons truc tive me thods of this study , however , do no t seem

to require this and it thus appears tha t the ea r l i e r  resul ts ,

have been strengthened as well as put in constructive form .

As regards the analytic operator approach (5 ,6,7,81 the

following comparative remarks are appropriate. The system

is assumed to be differentiable with derivatives used in

modeling the u~x map. This procedure has the following attributes:

(i) The expansion is valid on an input set I l u l l  < k.

(ii) Computing of derivatives of high order is necessary
and f must be known to a comparable accuracy .

(iii) A family of nonlinear state equations with a linear
state -‘. output map realizes the power series
expansion .

(iv) No input-output information is utilized in the expansion .
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In the same sp irit the techni que of sections 3 ,4 has the

following charac teristics:

(i’) The expansion is valid on a compact  s e t .

(ii’) f need only be known to he continuous .

(iii’) A family of linear state equations with a
n o n l i n ea r state-output map r eal i zes the poly-
nonic expan s ion .

(iv ’) Only input-output information is utilized in
the expansion.

The complexity of working with compact sets is

offset by the computation of derivatives , thus attributes (i)

and (ii) are computationa llyon a par with (i’) and (ii’).

Concerning (iii) and (iii’) the merits of shifting the

nonlinear behavior to the output constraint can be judged

only in li ght of a specific application. Attributes (iv)

and (iv ’) serve to crystalize the comparison . If the system

is precisely known then the power series expansion methodology

seems to have the advan tage , al thoug h one mi ght question

expanding at all in this case. If the system is unknown then

the me thodology of this  study can be u t i l i z e d  to m a t h e m a t i c a l ly

model the system using external measurements.

Consider now the question of convergence rate. In the

power series me thodology convergence proper ties p ara l le l  those

of the power series on the real line . Similarly the Bernstein

system of theorem (4) is a linear operator composed with a

memoryless Bernste in  map and as such convergence propert ies

of the Berns te in  polynomials  on R are inher i ted by the Berns te in

system. Thus an accurate assessment for comparative

convergence is obtained by looking at the situation on the

real line .
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We consider then the set [O ,l ] c R , which sa t i sf ie s

both (i) and (i’) as the domain of interest. For the function

f on R let m(.) denote the modulus of continuity of f defined

by

m ( c () = supflf(x)-f(yfl Oczx,y<l , lx - y J < ct}.

For continuous f obviously m(ct) -
~~ 0 as c + 0. We cite some

standard results which go back to Jackson [25], Vallee-Poussin

[26] and Popoviciu [21].

Here we use b~ to denote the Bernstein polynomial of
order n.

(a) For each n

sup l f ( x ) — b  (x) ( < (5/4)m(n~~
”2)

[0 ,1] n —

If f is differentiable and m
1 is the modulus of continuity

of f’ then we have also

(b) For each n

Supjf(x)—b (x)( < (3 / 4 ) n ~~ /’2m1 (n~~ /~’2 )
[0,1]

In closing I would like to acknowledge the careful

review and constructive suggestions of ( )

which have materially improved the paper.
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